Toolformer: Language Models Can Teach Themselves to Use Tools
We introduce Toolformer, a model trained to decide which APIs to call, when to call them, what arguments to pass, and how to best incorporate the results into future token prediction. (Abstract)
self-supervised
We incorporate a range of tools, including a calculator, a Q\&A system, two different search engines, a translation system, and a calendar.
Figure 1
LLM自身がGoogle検索や計算機を使って正しい答えにたどり着ける
2 Approach
Figure 2: Key steps in our approach
1. Sample API Calls
Figure 3
[qa]など特殊なトークンを使う
Appendix A.2
2. Execute API Calls
3. Filter API Calls
LM datasetsをAPI callを含むLM datasetsに変える
-> ファインチューニング
3にTools
Question Answering
Calculator
Wikipedia Search
Machine Translation System
Calendar
Table 1
4 Experiments
we use a subset of CCNet as our language modeling dataset C and GPT-J as our language model M (4.1)
We evaluate our models on the SQuAD, Google-RE and T-REx subsets of the LAMA benchmark (4.2.1)
Table 3
Toolformerが最良。GPT-3を超えている
Table 8: Toolformerでperplexityが悪化していないことも確認 (4.3)
コミュニティ実装